Data Structure MCQ – Singly Linked List Operations: 1
1. A linear collection of data elements where the linear node is given by means of pointer is called?
a) Linked list
b) Node list
c) Primitive list
d) Unordered list
Answer: a
2. Consider an implementation of unsorted singly linked list. Suppose it has its representation with a head pointer only. Given the representation, which of the following operation can be implemented in O(1) time?
i) Insertion at the front of the linked list ii) Insertion at the end of the linked list iii) Deletion of the front node of the linked list iv) Deletion of the last node of the linked list
a) I and II
b) I and III
c) I, II and III
d) I, II and IV
Answer: b
3. In linked list each node contains a minimum of two fields. One field is data field to store the data second field is?
a) Pointer to character
b) Pointer to integer
c) Pointer to node
d) Node
Answer: c
4. What would be the asymptotic time complexity to add a node at the end of singly linked list, if the pointer is initially pointing to the head of the list?
a) O(1)
b) O(n)
c) θ(n)
d) Both O(n) and θ(n)
Answer: d
5. What would be the asymptotic time complexity to insert an element at the front of the linked list (head is known)?
a) O(1)
b) O(n)
c) O(n2)
d) O(n3)
Answer: a
6. What would be the asymptotic time complexity to find an element in the linked list?
a) O(1)
b) O(n)
c) O(n2)
d) O(n4)
Answer: b
7. What would be the asymptotic time complexity to insert an element at the second position in the linked list?
a) O(1)
b) O(n)
c) O(n2)
d) O(n3)
Answer: a
8. The concatenation of two lists can be performed in O(1) time. Which of the following variation of the linked list can be used?
a) Singly linked list
b) Doubly linked list
c) Circular doubly linked list
d) Array implementation of list
Answer: c
9. Consider the following definition in c programming language.
struct node { int data; struct node * next; } typedef struct node NODE; NODE *ptr;
Which of the following c code is used to create new node?
a) ptr = (NODE*)malloc(sizeof(NODE));
b) ptr = (NODE*)malloc(NODE);
c) ptr = (NODE*)malloc(sizeof(NODE*));
d) ptr = (NODE)malloc(sizeof(NODE));
Answer: a